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SUMMARY

A recently developed non-staggered methodology which uses the principle of applying fourth-order
dissipation to the governing pressure-correction equation is developed so it can be applied to unstructured
grids. A �nite volume methodology is used for discretization. The fourth-order dissipation term is found
using second-order gradient operators. This makes it straightforward to incorporate the dissipation term
on unstructured grids. The new methodology is compared with solutions from a standard �nite volume
second-order �ow solver and is also tested for a standard laminar driven-lid �ow problem with grids
systems that do not have a uniform structure. Finally, we demonstrate how the new methodology can
be used to predict �ow over a wavy boundary. Copyright ? 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In this paper a new non-staggered grid methodology for the solution of �uid �ows on unstruc-
tured grids is developed and compared with a Navier–Stokes solver developed by Bresslo�
[1], using the SIMPLEC technique, �nite volume scheme and second-order upwind di�er-
encing. The methodology combines techniques employed in the meshless methods [2] and
uses arti�cial di�usion applied in the �ow direction on the non-staggered (co-located) grid
with fourth-order pressure dissipation. The methodology therefore has several unusual features,
combining to form a novel methodology. First we will concentrate on the non-staggered fea-
tures of the presented scheme.
In principle, non-staggered methodologies have many advantages. However, staggered

methodologies have the implicit advantage that odd–even coupling is prevented [3]. A popular
non-staggered scheme employs the technique of ‘momentum interpolation’ in order to cure
the problem of odd–even coupling. This scheme has �rst proposed by Rhie and Chow [4]
and has been used by several other investigators [5–7]. The Rhie and Chow scheme is the
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methodology that we propose to develop. We will not dwell on the advantages of developing
this or any other non-staggered methodology, they have been detailed elsewhere [8]. How-
ever, one important bene�t is it can simplify the overall numerical coding. On the whole,
this important bene�t is lost using the non-staggered methodology developed by Rhie and
Chow [4] when applied to unstructured grids, although, the Rhie and Chow method is rela-
tively straightforward to apply to Cartesian grids. Arm�eld has adapted the original Rhie and
Chow method for this express purpose [9; 10]. It is also true to state that developing Rhie
and Chow’s method for non-Cartesian grids presents little di�culties provided body-�tted co-
ordinates are used owing to the fact that there is a regular mapping of nodes and regular
‘di�erences’ between nodes. Whereas an unstructured grid poses a greater di�culty for the
Rhie and Chow method because these conditions do not apply, any advantages in terms of
simplifying the code are lost. We believe that this can be avoided if a pressure dissaption
technique is employed [11]. Thus the new methodology follows the principle of the Rhie and
Chow method but employs alternative numerical analysis. We brie�y outline the non-staggered
methodology, described in more detail by Barton and Kirby [12].

2. THE NEW METHODOLOGY

2.1. The pressure dissipation

In part, this paper is a direct continuation of Reference [12] which developed a non-staggered
methodology for Cartesian grid problems. The main di�erence relates to the integration of
the governing equations around control volumes. The solution of the governing equation is
based on the standard SIMPLE algorithm [3]. The algorithm calculates the pressure �eld
by ensuring mass-continuity is satis�ed. This requirement causes a major di�culty when
implementing non-staggered methodologies, because continuity cannot be integrated directly
around a single pressure node without interpolation. Another way to describe this di�culty
is to say that an individual velocity node is not directly linked to its pressure gradient. The
argument proposed in Reference [4] to avoid this problem is that the cell-face velocities
require special interpolation introducing an additional term similar to fourth-order dissipation
being applied to the governing pressure-correction equation. Rhie and Chow introduce the
dissipation term ‘indirectly’ or, arguably, in a ‘disguised format’. However, Arm�eld [9; 10]
has modelled problems by directly applying this term to the governing pressure-correction
equation. The di�culty dealing with the dissipation term presented by Arm�eld is it is far
from straightforward how to apply it to an unstructured grid. We can avoid this problem by
constructing the fourth-order pressure dissipation term from a repeated application of second-
order operators, e.g.

d4p
dx4

≈ ∇2
x ∇2

x p (1)

Unlike a (directly constructed) fourth-order operator, it is straightforward to construct a
second-order operator (that is second-order accurate) because it only requires the central node
and its surrounding nodes that form the computational molecule. In essence then, the �rst
step is to �nd a �eld-variable constructed from ∇2

x p and then re-apply the operator to �nd
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the dissipation term. Adiabatic conditions are employed for the second step in order to avoid
continuity leaking out of the boundaries.
The ‘exact’ dissipation term that Rhie and Chow introduce into the governing pressure-

correction equation can be expressed as

2�∇x 1Bu 2�∇xp− 1�∇x 1Bu 1�∇xp (2)

for the x-co-ordinate on a Cartesian grid. The B coe�cients are the pole-coe�cients used
in the algebraic governing velocity equations. The exact dissipation term is the di�erence of
the divergence of the pressure gradients over two-nodal spacings compared with one-nodal
spacing. In Reference [12] it is assumed that the B coe�cients can be considered to be
slowly varying in comparison with variation of the pressure �eld and therefore we can use
the following approximation:

If
@2�
@x2

= ∇2�=
∑
M
AxxM (�M − �p)

Let
@
@x
1
�
@�
@x
=
∑
M
AxxM

(
�M + �P
2

)
(�M − �p) (3)

where M refers to the surrounding nodes and �p is the pole node. A is an algebraic coe�-
icent. The double ‘xx’ superscript refers to the fact that it is a second-order di�erential in
the x-direction and the � is a general �ow property for the example, we may wish to use
(@=@x)�(@=@x)u. The methodology can now take advantage of the fact that we can make the
following approximation:

2�∇2

Bu
p− 1�∇2

Bu
p ∼=

(
�x2

4

)
1�∇4

Bu
p (4)

The right-hand term is in the form of a fourth-order operator which acts as a smoothing term
for the pressure �eld. The only problem with the implementation of this operator term is that
it is multiplied by a squared unit-length. To remove this length scale we introduce a special
second-order operator ∨2. This term is de�ned as follows:

Let ∨2�=∑
M
AxxM (�M − �O)=AO

where AO=
∑
M
AxxM (5)

By introducing this operator we have the pressure dissipation term with the correct dimensions.
A further discussion of this operator is presented in Reference [11]. Referring back to Equation
(1), the operator ∨2 can be used as the �rst-step in order to the �nd the fourth-order dissipation
term. The operator ∇2=� expressed in Equation (3) can be used as the second-step. In summary,
we use a pressure dissipation term in the form

dissipation = �

(
∇2
x

Bug
∨2x p+

∇2
y

Bvg
∨2y p

)
(6)
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The amount of applied dissipation needs to be minimized as excessive application we have
found causes a detrimental e�ect on the overall results. In the simulations presented we set
� = 0:04. In comparison with the Rhie and Chow method, their value of ∝ is equivalent to 0.5.
The value used in the current methodology is much lower because the above dissipation term
uses Bg coe�cients, (the g superscript refers to geometrical terms). The Bg coe�cients only
contain the geometrical discretized terms and it excludes temporal and pseudo-temporal terms.
Meaning that the dissipation term is not dependent on the time-step or under-relaxation. This
error was over-looked in Rhie and Chow’s original methodology as pointed out in References
[13; 14].
The methodology we have presented is similar to that in Reference [12], the main di�erence

concerns how the terms are discretized. This includes, of course, how we generate the operators
∇2 and ∨2 give this step is straightforward, the current methodology can be easily developed
for unstructured grids.

2.2. The meshless methodology discretization

The current work was developed as part of a meshless methods solver applied to a �nite
volume grid system. Modifying a meshless method solver and its discretization approach for
dealing with a �nite volume grid system has been independently developed [15]. We can �t
spatial functions or apply the Gauss Law to �nd the coe�cients associated with derivative
terms, (or, in our case, derivative terms that are integrated across the control volume).
We use a control volume approach in order to generate the derivative terms such as @�=@x

and @2�=@x2. A control volume is illustrated in Figure 1. The central node is located at
the centre of the computational molecule. The control volume for the second-derivatives is
formed by connecting adjacent centroids. The divergence theorem is applied to obtain the �rst
derivative

@ ��
@x
=
1
ACV

∫∫
CV

@�
@x
dx dy =

1
ACV

∮
CV
�i× ds

≈ 1
ACV

∑
M

(
�M + �M+1

2

)
�yM→M+1 (7)

Figure 1. Illustration of a computational molecule and its control volume structure.
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where ACV is the area of the control volume. The discretization procedure collects �M terms
and then stores them so the �nal discretized term is in a �nite-element format where the
operator can be expressed as

@ ��
@x

≈∑
M
AxM (�M − �O) (8)

A similar (more complex) procedure is applied to obtain the second-derivative terms,
@2�=@x2. In this case the problem needs to be broken into two parts. The �rst part is to
integrate around a small triangle to �nd the �rst-order derivative at the centroid. Consider a
M th triangle: (

@ ��
@x

)
M

=
1
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+(�M+1 + �O)�yM+1→O] (9)

The �nal result is formed by using the substitution of the (@�=@x)M terms into the following
expression:
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The superscript ‘c’ denotes that we now integrate form one centroid position to the next. By
collecting the various coe�cients together we can then obtain the �nal result in the form:

@2 ��
@x2

≈∑
M
AxxM (�M − �o) (11)

The discretization of the governing equations is now straightforward because we have es-
tablished the discretized partial-derivative operators. These operators are merely substituted
for the partial derivatives found in the governing equations in order to obtain the governing
algebraic equations. The governing equations used in the SIMPLE scheme are Navier–Stokes
equations (linearized with respect to time); a velocity correction equation and a pressure cor-
rection equation. One of the advantages of using a non-staggered grid methodology is that
the same operators are used for the velocity governing equations and the pressure governing
equation. Finally, we will consider the treatment of the governing pressure-correction equation,
in partial derivatives this is expressed as

0=
@u∗

@x
+
@v∗
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−
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+
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1
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)
+ dissipation (12)
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where u∗; v∗ denote the intermediate velocity �eld calculations and p′ is the velocity �eld
calculations and p′ is the pressure correction used in the SIMPLE algorithm. The equation con-
tains an ‘intermediate’ continuity term; a Laplacian-type operator for the pressure-correction
and the pressure dissipation term. Integrating the second term in two-steps means an ex-
panded computational molecule is formed (a problem associated with using a non-staggered
grid). Since we encountered this di�culty before with Equation (2), we use the same approx-
imation expressed in Equation (3) to deal with this term.

2.3. Di�erencing scheme

The technique proposed in Reference [2] uses a novel method to discretise the nodal grid
produced. We aspire to make a �exible, versatile and robust solution. In order to prevent
oscillations in the spatial solution of the results during the repeated use of the solver a
system is used to add arti�cial viscosity (�), also known as numerical dissipation (extra
di�usion). This equivalent to dampening the system of equations. When discretised the spatial
polynomial does not implicitly contain enough arti�cial viscosity so invariably the solution
becomes unstable. Therefore, it is necessary to explicitly add an amount to stabilize the
solution. The disadvantage of applying arti�cal viscosity is that it compromises the accuracy
of the solution, it also has a further problem of reducing the hyperbolic nature of the equations
causing slower convergence.
In previous methodologies a polynomial is applied with a basis in the x and y. As the �ow

direction is not considered no weighting factors in�uence the variables in the �ow direction.
In order to achieve a basis of the �ow therefore it is proposed that a new co-ordinate system
(�; �) based on �ow direction should be applied. This will allow the arti�cial viscosity to be
applied to the �ow direction only and not to any other plane.
At present the spatial polynomial applied for a four-node relationship is as follows:

�= a0 + a1x + a2x2 + a3y + a4y2 (13)

The transformation to change co-ordinates from �(x; y) to �(�; �) is(
�
�

)
=

(
cos 	 sin 	
− sin 	 cos 	

)(
x
y

)
(14)

Now the general transport equation for u or v can be represented by

@
�′�
@�

+
@
�′�
@�

=
(
@2�
@�2

+
@2�
@�2

)
+ S�� (15)

In summary, the proposed transformed co-ordinate system allows more discrete and more
e�ective use of arti�cial viscosity with its application in the �ow direction during a solution.
Due to which the solution is numerically stable in the �ow direction with the application of
arti�cial viscosity and the solution should be more hyperbolic in comparison with a scheme
that independently test for numerical stability in the x and y directions.

2.4. Matrix solver

Various matrix solvers were tried including TDMA (tri-diagonal matrix algorithm), Guass–
Seidel and Conqurate conjugate gradient methods. A simple Guass–Seidel solver was found to

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 38:747–768



NON-STAGGERED GRID METHODOLOGY 753

Figure 2. Illustration of boundary elements that are used to calculate the boundary pressures.

be e�ective for solving the velocity �eld whereas the pressure �eld was solved most e�ectively
using a modi�ed TDMA solver for a non-regular grid system. The lines within the modi�ed
TDMA are constructed to ensure every node in non-uniform grids are solved, an illustration
of three constructed lines are shown in Figure 2. A normal TDMA solver is detailed in
Reference [16]. The algorithm sweeps through the solution domain until the residuals reduce
by four orders of magnitude.
Typically, results are considered to have converged if residuals reduce by at least four

orders of magnitude. The methodology applies the following boundary conditions. First-order
upwind interpolation is applied at the outlet boundary. Inlet velocity values are prescribed.
No-slip boundary conditions are applied at the walls. Second-order extrapolation is applied
for the pressure �eld. Pressure at the boundaries are calculated using extrapolation over three
points which are located on the intersect of a line normal to the boundary. This is illustrated
in Figure 3. For wall pressure nodes the condition that @p=@n=0 is incorporated into the
extrapolation.

3. THE FINITE VOLUME METHODOLOGY

A �nite volume solver developed at Southampton University [1] was used to test for grid-
independent solutions to two standard numerical test cases; �ow through a sudden expansion
and �ow past a cylinder. The standard solver employs a multi-block method for structured
grids [19] and the SIMPLEC (semi-implicit pressure linked equations consistent) [18] pressure
correction technique as its solution algorithm. The well established technique of using mo-
mentum interpolation [13] is used (for the evaluation of control volume face �uxes) to avoid
pressure–velocity decoupling. Convection �uxes are discretized using deferred correction [19]
and Van Leer’s high resolution curved line advection method (CLAM) [20] and di�usion
�uxes are approximated by central di�erences.
Although the new methodology can be used with any type of grid system, for comparison

purposes, it is tested grids for two problems generated for the standard �nite volume solver.
For the backstep problem, two blocks are used; one upstream and one downstream of the
expansion and two blocks are also used to mesh the cylinder problem, one on each side of
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Figure 3. Illustration of the construction of the matrix data point around the calculation node.

the centre-line drawn parallel to the solid walls. Whereas the backstep geometry can be solved
on a Cartesian grid, the cylinder geometry demands a curvilinear solver. Contravariant vectors
are employed in the momentum interpolation procedure and Cartesian velocity components
are used as dependent variables in the momentum equations [21; 22]. Further details of the
standard scheme are discussed [1].

4. EXAMPLE APPLICATIONS

The new methodology was tested with comparisons against the �nite volume solver simulations
for �ow over a backward facing step and �ow around a circular cylinder. After good agreement
was achieved between the two methodologies, the problem of laminar �ow in a square cavity
with a driven lid was examined for the new methodology, and we show simulations of laminar
�ow over a wavy boundary.

4.1. Flow over a backward facing step

Flow over a backward facing step has important �uid dynamic features, which are caused
by the instantaneous change of dimensions within the system. These �ow features can be
observed in numerous engineering applications. For a closed duct �ow there is an upper re-
circulation area, which causes the growth of the lower attachment point to be decreased. The
upper separation is caused by an adverse pressure gradient while pressure recovery causes the
upper reattachment [23].
Experimental work, by Armaly et al. [24], has formed the backbone of many comparative

studies. Their �ndings are of major importance within the �eld, despite the fact that the
agreement between the numerical analysis and the experimental was only acceptable up to
Reynolds number of 500 due to numerical di�usion. There are many numerical simulations
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Figure 4. Comparison of the �ow over a backward facing step with the Navier–Stokes solver represented
by the + and the non-staggered methodology represented by the ×.

[25–29], where good agreement in two dimensions has been recorded, more recent studies
have also considered three-dimensional e�ects [30].
It is straightforward to develop grid independency tests as grid resolution has been examined

by a number of authors such as [31; 32]. While the work of [27] speci�cally considered a
non-uniform grid distribution. Other studies have looked at speci�c areas, for example [33; 6]
studied the behaviour of boundary conditions. This work allows us to make a numerical
assessment of the required grid re�nement.
Figure 4 shows a comparison of the u velocity pro�les over the backward facing step

for two di�erent methodologies, the standard �nite volume solver and the new methodology.
Both simulations were generated for a Reynolds number of 800, the length scale was based
on two inlet heights, the standard solver pro�les were generated on a Cartesian with 7500
nodes and the non-staggered grid methodology used a similar grid of 10,000 nodes. The new
methodology was run over 3000 iterations, which were required to achieve a convergence
criteria of 4 orders of magnitude. The pro�les for the two methodologies are virtually identical.
Note the testing of the new methodology used various grid distributions, shown in grids 1, 3
and 5. The results shown for the new methodology are grid independent. As excepted a �ner
grid is required, in comparison with a scheme that uses second-order upwind di�erencing.
Figure 5 shows results for a 50× 50 non-staggered grid and how the results are improved

with a �ner 100×100 grid in comparison with the standard solver.
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Figure 5. Comparison of results produced by the Navier–Stokes solver, ×, the non-staggered method-
ology run on a 100×100 grid + and the non-staggered methodology run on a 50×50 grid ◦.

4.2. Flow around a circular cylinder

Similar to the �ow over a backward facing step we show a u-velocity pro�le comparison in
Figure 6 for �ow around a circular cylinder produced by the two di�erent methodologies on
the same grid system. The Reynolds number was set to 25 to avoid instability and the lower
and top walls were set to zero-velocity. Unlike the comparison made for the �ow over the
backward facing step there are obvious discrepancies though the general velocity pro�les are
very similar. Unfortunately, we are approaching an upper CPU memory requirement, computer
spec PII with a 128 M of RAM, we have not been able to con�rm if the new methodology
has achieved grid independence.

4.3. Driven-lid �ow

The methodology is now assessed using the popular numerical problem for laminar �ow in
a square cavity with a driven lid. It is a typical test used for non-staggered methodologies,
(see for example References [34–36]). The problem is illustrated in Figure 7. The illustration
shows a large vortex in the middle of a square cavity which is created by a ‘driven-lid’.
A �ne grid (80× 80) is used as a datum set of results. The predictions using the �ne grid
are solved using the scheme presented in Reference [12], which is a �nite di�erence method
for uniform Cartesian grid systems. The new methodology is applied to �ve di�erent 20× 20
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Figure 6. Comparison of the �ow over a cylinder between the Navier–Stokes solver represented by the
+ and the nonstaggered methodology represented by the ×.

grids. Discussion focuses on grids 1, 3 and 5, although results 2 and 4 are not discussed
in the paper, they helped to establish linear trends. Grid 1 is a regularly-spaced triangular
grid system and grids 2–5 are increasingly deformed versions of grid 1. The deformed grids
1, 3 and 5 are shown in Figure 8. Each grid system has an unchanged central line of grid
points allow you to make direct pro�le comparisons without the need for interpolation. The
deformed grids have node points randomly displaced from their original position in the x and
y directions within an increasing spatial range. The displaced nodes are randomly selected,
where the probability of a displaced node increases with grid type. Grid 2 has a 20% chance
for a displaced node, Grid 3 has a 40% chance, Grid 4 a 60% chance and Grid 5 a 80%
chance, compared with the original grid system, giving grid which have greater distortion.
The simulations consider two Reynolds number cases Re=100 and 1000, the length scale

was based on the side wall height. Velocities are non-dimensionalized with the lid speed Ulid.
Pressure is non-dimensionalized by the term 
U 2

lid. In the high Reynolds number case, we
found that high arti�cial viscosity is required. Therefore, results are a re�ection of not how
well non-staggered performs as well as the di�erencing scheme used.

4.3.1. Low Reynolds number case. Figure 9 shows the predictions of pro�les for u-velocity
along the centre of the cavity for the �ne grid and grids 1, 3 and 5. The predictions using the
coarse grids are virtually the same, and we observe that there is very good agreement between
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Figure 7. Illustration of the driven-lid problem.

these coarse grid results and the results using the �ne grid. The maximum reverse velocity
of the coarse grid results is slightly under-predicted relative to the �ne grid demonstrating
the e�ect of an increase in arti�cial viscosity. We observe greater di�erences in Figure 10,
which shows the predictions of the variation of pressure along the central axis of the cavity
for the �ne grid and grids (1, 3 and 5). There is a greater discrepancy between the �ne
grid and coarse grid results. The results of all fail to give good agreement with the �ne
grid near the lower wall. However, the overall pro�le of these results compared with the
results from grid 1 is not greatly dissimilar. The coarse grid results under-predict the overall
pressure di�erence cased by an e�ective di�erence in viscosity in the pro�le, which has been
previously observed [12]. An important comment to make about these set of results are there
is no high frequency oscillations in the pressure pro�le (there is no zigzagging or ‘wiggles’
in the pro�le). This was an important point to consider when we examined the of pressure
contours for the �ne grid and grids (1, 3 and 5). The pressure contours show that the �ne grid
predicts a pressure drop near the top middle of the cavity (although it was o� centre it was
associated with the recirculation region), as well as four pressure gradients associated with
each corner. The top two pressure gradients were, of course, associated with the moving lid
and the rapid change in velocity from side-wall to driven lid. The bottom two were associated
with the prediction of small recirculation regions in the corners and zero �ow regions in the
extreme corners. By reviewing other pressure contour for grids 1, 3 and 5 we found that the
pattern became distorted. The two dominant pressure gradients changed signi�cantly for the
coarse grid and with subsequent distortion. The bottom right-hand corner gradient which had
surrounded the bottom and right boundaries started to translate to the right-hand side wall
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decreasing in area as the grid became more deformed, on the most deformed grid the pressure
gradient decreases dramatically. In comparison to the bottom left pressure gradient it seemed
to have merged with the centre and the top left-hand corner pressure gradients. However,
the pressure gradients at the top two corners were predicted but were more dispersed com-
pared with the �ne grid results. So, with the grids becoming more distorted the contours get
more dispersed and the pressure contours translate down the wall and into the centre of the
�ow near the right-hand boundary. Instead of a distinct pressure drop associated with the
centre of the vortex this pressure drop merged with the top left-hand pressure gradient and
the bottom left-hand gradient. The pressure contours associated with the more deformed grids
appear to give a better representation of the overall pressure �eld as grids 1 and 3 predict a
pressure drop on the right-hand side wall which is not observed in the �ne grid set of results.
The analysis of the results is con�rmed in Table I, which shows the average deviation of
the velocity and pressure �elds compared with the �ne grid results. The grids that are more
deformed predict increasing by worse agreement with the �ne grid results for the velocity-
�eld, but the change in results is in-signi�cant. However, surprisingly, the more deformed
grids predict increasingly better agreement with �ne grid results for the pressure-�eld, though
in this case the ‘improvement’ is very small. We conclude that if we increasingly deform a

Figure 8. The deformed grids used for the driven-lid problem, (a) grid 3, (b) grid 5.
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Figure 8. (Continued)

regularly spaced grid then the predictions are likely to deteriorate but the deterioration is not
signi�cant.

4.3.2. High Reynolds number case. For the high Reynolds number case, we observe that
the scheme fails to predict reasonable agreement between the �ne grid set of results and the
coarse grid set of results. This is due to the di�erencing scheme being �rst-order accurate.
In Figure 11 there are plots of u-velocity pro�les along the centre of the cavity, using the
�ne grid and the coarse grids (1, 3 and 5). Unlike, the low Reynolds number case, there is
a signi�cant degree of disagreement between the various coarse grid results. Grid 1 predicts
better agreement with the �ne grid set of results, which includes the prediction of a large
reverse velocity. Grids 3 and 5 appear to require more arti�cial viscosity to maintain stability,
resulting in worse results. Figure 12 shows the predictions of the variation of the pressure
along the central axis of the cavity for the �ne grid and grids (1, 3 and 5). The coarse
grid results completely fail to predict reasonable agreement with the �ne grid results, this is
due to the di�erencing scheme requiring excessive arti�cial viscosity. Grids 3 and 5 again
have worst results than Grid 1. From these pro�les it is important to note that there are no
pressure-wiggles. The �ner grid results, have similar features to its low Reynolds number
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Figure 9. Pro�les of the u-velocity along the centre line (x=0:5) of the cavity for Re=100 using the
�ne grid (continuous line), grid 1 (©), grid 3 (?), grid 5 (⊆).

counterpart as discussed earlier. There is a strong pressure gradient at the top right-hand side
corner, a pressure drop in the centre of the cavity and at the top left-hand corner there is a
strong pressure gradient associated with the corner but there is also another one further along
the lid. As with the discussion earlier, there were a number of changes that occurred when
we used the coarser grids and increased the distortion. In comparison with the previous study
with low Reynolds number, the di�erence between the coarse grid contours and the �ne grid
was of a lower magnitude but the general features remain similar. As with previous results the
pressure gradients at the bottom disappeared immediately and the bottom left-hand corner did
not merge up with the centre. The contours became more dispersed as the distortion increased
with the pressure gradients on the top left and right corners tending towards the middle, and
the middle pressure gradients transling slightly to the right. These features are successfully
predicted using the coarse grids (despite there being no strong qualify agreement). In Table II,
we compare the average deviation of �eld terms u, v and p of the coarse grid results with
the �ne grid results. The average deviation is found by di�erences from the course solutions
compared with the fourth-order interpolated values from the �ne solution, pressure are non-
dimensionalized with respect to 1=2
U 2

lid and velocities with respect to Ulid. As we would
expect, the values are a lot higher for the velocity terms, though the comparisons for the
pressure �eld have not deteriorated too greatly. Again, the results show a general trend that
the more deformed the grid is then the worst the results become, though the deterioration in
the results is certainly acceptable in terms of demonstrating a working methodology.
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Figure 10. Pro�les of the pressure variation along the centre line (x=0:5) of the cavity for Re=100
using the �ne grid (continuous line), grid 1 (©), grid 3 (?), grid 5 (⊆).

Table I. Calculated average deviations for u, v and p �elds between the medium grid
results and the �ne grid results for Re=100.

�(u) �(v) �(p)

GRID 1 1.81E-2 1.86E-2 2.89E-2
GRID 2 1.87E-2 1.90E-2 2.88E-2
GRID 3 1.90E-2 1.92E-2 2.87E-2
GRID 4 1.92E-2 1.93E-2 2.85E-2
GRID 5 1.96E-2 1.95E-2 2.82E-2

4.4. Flow over a wavy boundary

Flow over a wavy boundary is of interest because there is separation and reattachment caused
by the geometry but the positions of separation and reattachment are not �xed. We have
predicted a planar laminar �ow in a channel which has a lower wavy boundary and a �at
upper wall. The �ow con�guration is illustrated in Figure 13. The geometry has tapered-ends
at the inlet and outlet, it is 60 channel-heights long (60 h) and the amplitude of the wavy
boundary is 0:4h. Based on the mean inlet velocity and the inlet channel height, the Reynolds
number is Re=800. A parabola streamwise velocity pro�le is prescribed at the inlet and
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Figure 11. Pro�les of the u-velocity along the centre line (x=0:5) of the cavity for Re=1000 using the
�ne grid (continuous line), grid 1 (©), grid 3 (?), grid 5 (⊆).

�rst-order extrapolation is applied at the outlet. No-slip boundary conditions are applied at all
the walls and pressure extrapolation is applied for the boundaries.
The grid for the simulation uses 130× 80 points. The grid is stretched and compressed in the

vertical direction in order to achieve the wavy e�ect. The complete grid system and a section
of the grid in the mid-range x=−1 – 11 is shown in Figure 14. We show u-velocity pro�les
for this mid-section of the channel, in Figure 15. The pro�les in the �rst trough are slightly
di�erent to those in the second trough because the positions of the pro�les are slightly out-of-
phrase with each other. Nevertheless, the �gure does illustrate the fact that the �ow is virtually
periodic. The simulation predicts separation occurring just after a peak and it reattaches at
a similar location on the opposite wall. The �ow rapidly decelerates, as it enters a trough.
A contour plot of the pressure �eld for the mid-section is shown in Figure 16. The pressure
�eld re�ects the behaviour of the velocity �eld, there is an adverse pressure gradient associated
with the separation point and a pressure rise associated with the reattachment. As the �ow
leaves a trough there are strong pressure gradients reacting against the sudden constriction
of �ow, when the �ow enters a new trough we observe rapid pressure recovery. We can
observe the periodic behaviour of the �ow by plotting the maximum streamwise velocity
against distance in Figure 17. The �gure shows how the maximum streamwise velocity rises
and falls in phase with the wavy boundary, there is a slight gradual rise in the maximum
streamwise velocity with distance as the �ow is pushed away from the lower boundary with
each peak it passes over.
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Figure 12. Pro�les of the pressure variation along the centre line (x=0:5) of the cavity for Re=1000
using the �ne grid (continuous line), grid 1 (©), grid 3 (?), grid 5 (⊆).

Table II. Calculated average deviations for u, v and p �elds between the medium grid
results and the �ne grid results for Re=1000.

�(u) �(v) �(p)

GRID 1 5.12E-2 5.27E-2 2.93E-2
GRID 2 5.77E-2 6.22E-2 3.19E-2
GRID 3 6.67E-2 6.84E-2 3.33E-2
GRID 4 6.60E-2 6.95E-2 3.34E-2
GRID 5 6.58E-2 6.98E-2 3.38E-2

Figure 13. Illustration of the ‘laminar �ow over a wavy boundary’ problem.
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Figure 14. The grid system used for the wavy boundary problem (a) the complete grid system,
(b) a section of the grid between x=−1 to 11.

Figure 15. Pro�les of the u-velocity at various locations in the range x=−1 to 11.

5. CONCLUDING REMARKS

We have developed a non-staggered methodology which uses a pressure dissipation term in
order to suppress wiggles in the pressure �eld. The development allows us now to apply
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Figure 16. A contour plot of the pressure �eld in the range x=−1 to 11.

Figure 17. The variation of maximum predicted streamwise velocity with
distance from inlet to the outlet.

the scheme to unstructured grid systems. Standard �nite volume methodology is used for
discretization.
The comparisons of the �ow over a cylinder and the �ow over a backward facing step

between the standard �nite volume solver and the new methodology show a good agreement.
Flow simulations for the backward facing step had insigni�cant di�erences. Although the
results for the �ow over a cylinder problem are not identical, these results further established
the validity of the new non-staggered methodology �nite volume solver. Grid re�nement tests
shown with the backward facing step show that the new di�erencing scheme is very sensitive
to re�nement in the grid. The sensitivity is not surprising as the scheme is based on central
di�erencing terms and does not successfully introduce the hyperbolic nature of the �ow. But
it works with su�cient grid re�nement. From our experience we do not recommend using
this approach for a �nite volume or meshless method unless the practitioner is prepared to
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use a �ne grid and wants to develop a solver where the spatial functions are calculated once
at the beginning.
The new non-staggered methodology was further investigated using the standard ‘driven-

lid’ problem. In the test increasingly deformed grid structures were used to predict the �ow.
It was found that by increasing the deformation of the grid the agreement with �ne grid
results deteriorated, as we would expect, though the deterioration was not excessive. The
deterioration of the results was found to be strongly e�ected by the di�erencing scheme for
the high Reynolds case.
In conclusion, the non-staggered methodology is successful but a better di�erencing scheme

needs to be developed to deal with coarse grid distributions. We have also demonstrated that
the scheme can be used to predict more complex �ows with stretching and distortion of the
control volumes.
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